
The Little Book Of Big 
Changes In AI-Powered  
Drug Discovery 

EBOOK

A somewhat comprehensive rundown of all the 
ways AI is transforming drug discovery and the 
future of biomedical research.

http://www.drugbank.com


Contents

Introduction
	 AI Has Changed the Game

	 Impact on Drug Discovery

AI Advancements
	 AI and the Drug Discovery Pipeline

	 Big Deal Breakthroughs

Research
	 Commercial Cases

	 Insilico Medicine

	 Celeris Therapeutics

	 Cyclica

	 Academic Cases

	 DeepCE

	 DOCKSTRING

	 EGGNs

Quality Data

About DrugBank

Appendix
	 Resources

	 References



1EBOOK: THE LITTLE BOOK OF BIG CHANGES IN AI-POWERED DRUG DISCOVERY 

AI has launched itself from the pages of science 
fiction and disrupted our industry. 

At this point if you aren’t using AI for drug discovery and repurposing, you’re 

setting yourself up to be left behind. As the pace of innovation continues to 

surge, hundreds of startups are centering their entire organization around AI 

and seeing astounding results. Pharma companies aren’t being shy either, with 

numerous big names quickly shifting to integrate AI into their practices. 

Everyone, at every level of your organization, needs to be thinking about 

applying AI as a means to reduce costs, increase speed, and ensure your time 

and efforts are in pursuit of successful drug candidates and treatments.

Artificial Intelligence 
Has Changed The Game

Startups using AI1 

Pharma companies using AI2

Drugs developed as a result of AI3

Invested in companies & 
partnerships leveraging AI4
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There are currently more than 100 drugs in the  
AI in drug discovery pipeline, and numerous 
drugs have been making their way to clinical 
trials in a matter of years — instead of decades. 

The Impact On Drug  
Discovery Is Undeniable

As AI increasingly becomes standard practice, access to high-quality data 

is proving to be a true differentiator. You’ve likely heard, if not already said 

“garbage in, garbage out,” when it comes to drug data. As the move to AI 

continues to advance it will only become more vital to have reliable, clean, and 

robust datasets. Without this, you’ll find yourself spending more and more time 

getting datasets ready before you can even begin your research. 

Yet, data is growing at such an exponential rate that it is becoming impossible 

to keep up with, maintain, structure, and normalise it at a pace and standard 

that enables anyone to use it to its fullest potential.

At DrugBank we work tirelessly to equip leading data 
scientists with the most in-depth, highest-quality, and up-
to-date drug data on the market.

As a result we get to see firsthand how the industry and new technology is 

transforming the future of medicine and healthcare. 

Of systematic reviews are inaccurate 
within 24hrs of publication6

Of reviews not updated in 2 years 
have incorrect conclusions6

Scientific journals published each year5
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AI-Advancements

The AI in drug discovery timeline is matter of months — without AI is 5+ years7

Over the past few decades, every facet of 
the drug discovery pipeline has in one way or 
another been disrupted by the move towards 
AI-guided approaches. 

The exponential growth and improved coverage and availability of omics-

datasets has pushed machine-learning-powered computational methods to 

become a critical tool in integrating, understanding, and utilizing these datasets 

to their fullest potential.
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Target identification efforts have been hugely improved through the integration 

of varying, often heterogeneous datasets such as pathways, RNA expression, 

animal models, mutations, and somatic and germline genetics. The machine 

learning approaches that are making this possible continue to be increasingly 

successful in finding targets for both new and existing diseases.

The application of knowledge graphs that integrate drugs, targets, diseases, 

pathways, and other entities, as well as their relationships, have led to a number 

of promising new approaches. 

One example that is still in early stages and currently seeing 
an intense research focus is the use of knowledge graphs to 
capture a more representative model of structural biology.

Big Deal Breakthroughs

Although now well-known in the drug-discovery world, the release of protein 

structure predictions from AlphaFold will have wide-ranging implications across 

the AI in drug discovery field. Beyond AlphaFold, there have also been significant 

advances in cryo-electron microscopy. Combining these advances introduces a 

new model for structural biology8, one which may well become a fertile ground 

for drug discovery research over the coming decade. 

The gaps that exist in AlphaFold predictions (namely conformational dynamics, 

and disordered proteins and regions) align well with the areas where cryo-EM / 

cryo-ET provide useful information. The combination of AlphaFold predictions 

with the information on tomography being realized with cryo-EM technology9 

will lead to near-atomic-resolution models of complexes, in their physiological 

context, inside the cell.

These advances in ML and experimental methods represent the starting point 

for new approaches to AI-focused drug discovery. The explosion in available high-

quality 3D protein structures and the continued advancements in structured, 

machine-learning-ready drug data will open up new approaches, and demand 

entirely new optimizations to handle the intersection between the growing 

protein structure and chemical compound spaces. 

Additionally, the COVID-19 pandemic opened the door to many new innovative, 

collaborative research projects focused on applying machine learning to better 

understand the SARS-CoV-2 virus, as well as identify novel antiviral drug candidates. 

4
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AI is making a huge impact across the commercial and 
academic research space. Below we explore six cases where 
recent key advances in AI-powered drug discovery have 
resulted in innovative tools and exciting research findings.

Research Worth  
Talking About

Insilico Medicine is a Hong Kong, China based 
company specializing in the development of 
new AI technologies.

COMMERCIAL

WHAT THEY’RE UP TO

Insilico has made it their mission to accelerate drug discovery and drug 

development by continuously inventing and deploying new artificial intelligence 

technologies. Nearly a decade old, they now have several oncology candidates in 

their pipeline, and are pursuing the development of both drugs and biomarkers 

in areas ranging from fibrosis, infectious diseases, immunology, and the process 

of aging.

http://insilico.com
https://insilico.com/
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HOW THEY’RE USING AI 

One of the most noteworthy advancements Insilico has developed involved 

applying a generative pipeline to complete hit discovery, optimization, synthesis, 

and validation on candidates against discoidin domain receptor 1 (DDR1), a 

kinase target implicated in fibrosis and other diseases. 

This approach uses a two-step algorithm. The first step involves learning a 

mapping of the chemical space; the second step explores this mapping using 

their proprietary deep reinforcement learning platform GENTRL (General Tensorial 

Reinforcement Learning) to learn DDR1 and common kinase inhibitors. GENTRL 

utilized three distinct Kohonen-based self-organizing maps (SOMs) as reward 

functions for the reinforcement learning step: the trending SOM (scores compound 

novelty based on patent disclosure dates), the general kinase SOM (distinguishes 

kinase inhibitors), and the specific kinase SOM (isolates DDR1 inhibitors).

This approach identified four active compounds10, two active in cellular assays, 

and one lead candidate that demonstrated favorable pharmacokinetics in mice.

Insilico has also advanced our understanding of aging. Applying several supervised 

machine learning approaches, including neural networks, Insilico built a panel of 

tissue-specific biomarkers of aging.

WHY WE’RE SO IMPRESSED 

Insilico’s DDR1 research was able to save significant development time, completing 

the process in 46 days which was 15-fold faster than traditional approaches.

Insilico was also able to identify the genes most important 
for age prediction11, achieving Pearson correlation of 0.91 
for the actual age values of the muscle tissue samples.
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WHAT THEY’RE UP TO 

Celeris Therapeutics focuses on undruggable pathogenic proteins that cause 

serious conditions such as Alzheimer’s and Parkinson’s disease. Their current 

pipeline includes programs in neurology and oncology. Celeris is also using graph 

neural networks to predict the properties of molecules.

HOW THEY’RE USING AI

In their Xanthos Match Maker platform, Celeris encodes molecular structures 

in a graph along with features such as the number of hydrogens, valence, and 

aromaticity and then applies deep neural networks where information about 

molecules and proteins are processed into an increasingly high-level form. 

To make a molecular graph more performant, Celeris uses additional ML 

techniques to improve molecular fragment linking (linking two fragments binding 

in nearby subpockets together has become an important technique in fragment-

based drug discovery to optimize the binding potency of fragment hits). 

In late 2021, Celeris published work12 describing the use of Variational 

Autoencoders (VAEs) to augment existing data with a bond-angle-torsion 

coordinate system, trained on the ZINC dataset, that demonstrated an 

improvement of 9.3 percent (79 to 88.3) over the previous model (DeLinker).

Applying these approaches and models, Celeris was able to identify novel West 

Nile Virus NS2B/NS3 protease inhibitors13. The viral NS2B/NS3 protease is critical 

to the viral replication process. Using these deep learning approaches, Celeris was 

able to identify novel, unexplored drug candidates that demonstrate an inhibition 

score statistically neighboring experimentally confirmed inhibitors, presenting new 

candidates for treating West Nile Virus.

WHY WE’RE SO IMPRESSED

Drugs are currently limited in their ability to treat diseases caused by  

pathogenic proteins. 

By establishing reliable, AI-backed methods to leverage 
the body’s natural cell-based mechanisms to degrade 
these proteins, they were able to identify novel potential 
treatment options. 

Celeris Therapeutics is a deep learning company focused on developing therapeutics that work to degrade disease-producing proteins. 
Based in the US, they also have a presence in Austria. 

https://celeristx.com
https://celeristx.com
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WHAT THEY’RE UP TO 

Cyclica takes an interdisciplinary, collaborative approach to identify molecules 

that address protein malfunction. The company leverages polypharmacology, a 

method of concurrently evaluating interactions, to discover new drugs. 

HOW THEY’RE USING AI

Cyclica’s machine learning platform, MatchMaker, combines features derived 

from protein targets and small molecules to distinguish binding from non-

binding protein-ligand pairs. MatchMaker, trained on ~1.5M human bioactivities 

(including DrugBank), innovates on existing drug-target interaction models by 

augmenting the protein representations with structural data. 

This approach14 involves mapping drug-target interaction pairs onto protein 

binding sites of 3D protein structures. Uncertainties in these predicted and 

experimental mappings are handled in the model using a deep neural network 

method called Filtered Transfer Learning (FTL). FTL defines multiple tiers of data 

confidence as separate tasks in a transfer learning setting. Fine-tuning of the 

DNN is achieved in a hierarchical process by iteratively removing data points with 

lower label confidence and retraining.

In 2021, Cyclica applied many of these techniques to quickly identify 

repurposed drug candidates for COVID-19. Cyclica developed a database 

called PolypharmDB15, a deep learning-based resource based on the DrugBank 

knowledge base. This resource was then utilized by researchers at Ryerson 

University to predict novel drug candidates16.

Cyclica is a drug discovery company headquartered in Toronto, Canada, with teams also located in the US and UK. They work to harness 
AI and machine learning and utilize a custom-built interactome library to model potential protein interactions. 

Figure: Data Partitioning by Confidence for Filtered Transfer Learning

WHY WE’RE SO IMPRESSED

Cyclica’s platform MatchMaker, with its unique approach 
and generalization capacities, has demonstrated an ability 
to improve its speed, efficiency, and success rates when 
predicting potential molecules of interest.

https://www.cyclicarx.com/
https://www.cyclicarx.com/
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DeepCE

ACADEMIC

In a collaborative project between Ohio State University, City University of New York, and Cornell University, researchers Thai-Hoang 
Pham, Yue Qiu, Jucheng Zeng, Lei Xie, and Ping Zhang developed DeepCE, a mechanism-driven neural network-based method. 

WHAT IT DOES

DeepCE expands on phenotype-based compound screening by modelling 

chemical substructure-gene and gene-gene associations, predicting the 

differential gene expression profile perturbed by de novo chemicals. Essentially, 

DeepCE uses deep learning to predict how drugs will influence the amounts of 

RNA, and therefore the amounts of various proteins, produced by a cell, which in 

turn provides insights into how the drug may modulate the disease. 

HOW THEY’RE USING AI

DeepCE uses a neural network-based model for gene expression profile 

prediction consisting of several components. A graph convolutional network 

is used to learn a vector representation for each chemical compound from 

its graph structure. A feed-forward neural network is used to learn vector 

representations for cell line and chemical dose size. 

These vector representations are then put into the interaction component (two 

multihead attention modules, concatenated into a normalization layer followed 

by feed-forward layer and another normalization layer) to learn high-level feature 

associations, including chemical substructure-gene and gene-gene feature 

associations. Finally, the prediction component (two-layer feed-forward neural 

network with a rectified linear unit activation function) takes the interaction 

component’s outputs as inputs to simultaneously predict the gene expression 

values for all L100017 genes.

To validate the model’s effectiveness, the authors utilized DrugBank as a source for 

clinically relevant drug-target and disease relationships. The results indicated that 

integrating gene expression profiles generated with DeepCE can solve problems 

related to unreliable data in the standard (L1000) dataset, leading to better 

performances on downstream prediction tasks. This specific application of DeepCE 

represents the first work of phenotype-based drug repurposing for COVID-19.

Going one step further, Deep CE was applied to the full DrugBank dataset, 

combined with gene expression data from patients with SARS-CoV-2, to predict 

highly relevant drug candidates.

WHY WE’RE SO IMPRESSED

DeepCE offers improved performance compared to 
existing methods and has the advantage of providing data 
augmentation, which makes it possible to tackle areas with 
minimal or unreliable data.
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A research team from the Engineering, Chemistry, and Statistical Laboratory departments at the University of Cambridge, UK 
created DOCKSTRING, a software and data bundle for meaningful and robust comparison of machine learning models. 

WHAT IT DOES

One challenge in drug discovery is being able to utilize the full spectrum of 

knowledge available. Often, approaches that would be beneficial require the 

researchers to have a deep level of understanding of the underlying biology. One 

example of this is molecular docking. It requires extensive domain knowledge 

to set up experiments and train machine learning correctly. DOCKSTRING was 

created to help address this challenge.

HOW THEY’RE USING AI

As machine learning methods for drug discovery continue to be developed, 

benchmarks are required to compare performance against experimental data, 

giving an indication of what performance can be expected in the real world. 

While other benchmarking methods exist, DOCKSTRING offers standardized and 

accessible benchmarking capabilities based on molecular docking. The three-

component DOCKSTRING bundle includes code, datasets, and benchmarking 

tasks which allow ML practitioners without biological expertise to obtain 

meaningful docking scores. 

The code is an open-source Python package, and the dataset is the first to 

include docking poses. It is also the most extensive dataset that offers a 

complete matrix of docking scores for all ligand-target-pairs. This feature enables 

experiments in transfer learning and multi-objective optimization.

WHY WE’RE SO IMPRESSED

DOCKSTRING, like other recent tools, is aiming to lower the barrier to entry for 

drug discovery startups.

It goes beyond structure-based modelling and brings more 
complex techniques for predicting binding affinity into 
more ligand design pipelines.

DOCKSTRING
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WHAT IT DOES

Satorras, Hoogeboom, and Welling introduced the EGNN architecture for graphs 

that is translation, rotation, reflection, and permutation equivariant. 

Trained and tested against the QM919 20 dataset (a standard in ML for chemical 

property prediction tasks), Equivariant Graph Neural Networks (EGNNs) produces 

highly competitive results in all property prediction tasks while remaining 

simple, not requiring the use of higher-order molecular representations, 

molecular angles, or spherical harmonics.

HOW THEY’RE USING AI

Computational de novo design of new drugs and optimization of known 

compounds requires rigorous and unbiased exploration of chemical compound 

space. Recent advances in Graph Neural Networks (GNNs) have made significant 

improvements in this space in terms of accuracy and computational efficiency.

The EGNN-based model can predict all features from the QM9 dataset including 

equilibrium geometries, frontier orbital eigenvalues, dipole moments, harmonic 

frequencies, polarizabilities, and thermochemical energetics corresponding to 

atomization energies, enthalpies, and entropies at ambient temperature.

WHY WE’RE SO IMPRESSED

Graph Neural Networks (GNNs) can accelerate the drug 
discovery process by providing an ability to analyze 
molecules and their properties at a previously unattainable 
level, and EGNNs in particular represent a step forward in 
terms of simplicity and efficiency.

EGNNs The UvA-Bosch Delta Lab at the University of Amsterdam focuses on the fundamentals of deep learning. At the 38th International 
Conference on Machine Learning in 2021 their team of researchers introduced Equivariant Graph Neural Networks (EGNNs)18. 



12EBOOK: THE LITTLE BOOK OF BIG CHANGES IN AI-POWERED DRUG DISCOVERY 

If there’s one thing we know for sure, AI is at its 
best, and your research will be too, when you 
have the highest quality drug data that spans a 
vast range and depth of detail. 

In order to ensure that our data is of the highest quality we uphold strict 

criteria. Before we are satisfied with the quality of our datasets we ask ourselves 

a series of questions.

Quality Data, Defined

Does it have quality coverage?
Coverage means knowing that our data sufficiently captures all relevant  

medical information.

Is it consistent?
All data must be input in a consistent manner. At DrugBank we have 

strict curation specifications that all of our data must meet before it is 

incorporated in our datasets. By standardizing this multi-step peer review 

process we ensure consistency and accuracy.

Does it tie back to common data entities?
As we add more data to our datasets we create and strengthen many new 

connections between data points. Each additional connection improves the 

interoperability of our datasets.

Is it hierarchical and flexible?
Quality data enables you to zoom out or drill down to the appropriate 

level to adapt the data to the problem being solved. Our data needs to 

encompass the full variety and complexity of information available, so we 

incorporate as many levels of detail as possible.
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How structured is it?
Structured data is easier to search, find, use, and reason with. We work to 

create highly structured, detailed data so that our users have total control in 

how they manipulate and explore it.

Is it evidence-based and can you follow  
the data-lineage?
Quality data is evidence-based. By ensuring that all our data is based on 

evidence and its lineage can be traced we are able to review and adjust our 

data as the underlying evidence changes overtime.

Does it have the appropriate meta-data?
We make sure that we can trace all data curation actions so that we can 

internally audit and question our data. At any time, we can review who 

added or updated data and when they did it.

Whether you’re midway through years of research or just 
starting out, it is always worthwhile to assess the quality 
and source of your data to ensure that you’re operating as 
efficiently as possible, and getting results you can trust. 
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DrugBank was founded at the University of Alberta and is the world’s first 

intelligent and comprehensive drug knowledge platform.

With the help of artificial intelligence, our team of medical and scientific 

experts gather, author, verify, and organize all of the latest, most relevant 

biomedical information into one machine-learning ready platform. This platform 

is accessible through data downloads or software integrations and is constantly 

updated to include the latest findings. 

We’re working to augment human intelligence so that 
the world’s medical information can be used to its fullest 
potential and ensure that everyone has access to the best 
possible medical outcomes.

Our datasets are ideal for all kinds of machine learning, drug discovery 

applications. As a result we get to work alongside many leading researchers  

and institutions. 

Hi, We’re DrugBank!

Here’s a handful of our most requested datasets:

Adverse Effects

Indications

Protein Relationships

Drug Categories

Metabolism

Targets

Chemical Structure

Pharmacology

Contact us to learn more about DrugBank, our 
comprehensive drug database, & potential applications.

info@drugbank.com

drugbank.com/datasets

mailto:info%40drugbank.com?subject=
http://www.drugbank.com/datasets
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Appendix

Resources

PAPERS

SURVEY PAPERS

Walters and Barzilay, 2021. Critical assessment of AI in drug discovery.

Coley, 2020. Defining and Exploring Chemical Spaces.

Chuang et al, 2020. Learning Molecular Representations for  
Medicinal Chemistry.

Walters and Barzilay, 2020. Applications of Deep Learning in Molecule 
Generation and Molecular Property Prediction.

Cai et al, 2020. Transfer Learning for Drug Discovery.

REPRESENTATION AND TRANSFER LEARNING

Ahmad et al, 2021. ChemBERTa-2: Towards Chemical Foundation 
Models. [Code]

Satorras et al, 2021. E(n) Equivariant Graph Neural Networks. [Code]

Townshend et al, 2021. ATOM3D: Tasks On Molecules in  
Three Dimensions.

Chuang and Keiser, 2020. Attention-Based Learning on  
Molecular Ensembles.

Li and Fourches, 2020. Inductive transfer learning for molecular 
activity prediction: Next-Gen QSAR Models with MolPMoFiT. [Code]

GENERATIVE ALGORITHMS

Bengio et al, 2021. Flow Network based Generative Models for Non-
Iterative Diverse Candidate Generation. [Code]

Berenger and Tsuda, 2021. Molecular generation by Fast Assembly of 
(Deep)SMILES fragments. [Code]

Gao et al, 2021. Amortized Tree Generation for Bottom-up Synthesis 
Planning and Synthesizable Molecular Design. [Code]

Takeuchi et al, 2021. R-group replacement database for  
medicinal chemistry.

Imrie et al, 2020. Deep Generative Models for 3D Linker Design. [Code]

Jin et al, 2020. Hierarchical Generation of Molecular Graphs using 
Structural Motifs. [Code]

Polishchuk, 2020. CReM: chemically reasonable mutations framework 
for structure generation. [Code]

HIT FINDING AND POTENCY PREDICITON

Bender et al, 2021. A practical guide to large-scale docking.

García-Ortegón et al, 2021. DOCKSTRING: easy molecular docking 
yields better benchmarks for ligand design. [Code] [Data]

Graff et al, 2021. Accelerating high-throughput virtual screening 
through molecular pool-based active learning. [Code]

Gentile et al, 2020. Deep Docking: A Deep Learning Platform for 
Augmentation of Structure Based Drug Discovery. [Code]

Cáceres et al, 2020. Adding Stochastic Negative Examples into Machine 
Learning Improves Molecular Bioactivity Prediction.

Lin et al, 2019. Ultra-large library docking for discovering  
new chemotypes.

ADME AND TOXICITY PREDICTION

Siramshetty et al, 2021. Validating ADME QSAR Models Using 
Marketed Drugs.

Göller et al, 2020. Bayer’s in silico ADMET platform: a journey of 
machine learning over the past two decades.

Ryu et al, 2020. DeepHIT: a deep learning framework for prediction of 
hERG-induced cardiotoxicity. [Code]

SYNTHETIC ACCESSABILITY AND  
RETROSYNTHETIC PLANNING

Fortunato et al, 2020. Data augmentation and pretraining for 
template-based retrosynthetic prediction in computer-aided  
synthesis planning.

Koch et al, 2020.Reinforcement Learning for Bioretrosynthesis.

Somnath et al, 2020. Learning Graph Models for  
Retrosynthesis Prediction.

VISUALIZATION AND INTERPRETABILITY

Humer et al, 2021. ChemInformatics Model Explorer (CIME): 
Exploratory analysis of chemical model explanations. [Code]

Matveieva and Polishchuk, 2021. Benchmarks for interpretation of 
QSAR models. [Code]
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https://dspace.mit.edu/handle/1721.1/131238
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https://pubs.acs.org/doi/10.1021/acs.accounts.0c00699
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00699
https://doi.org/10.1021/acs.jmedchem.9b02147
https://cloud.ml.jku.at/s/dZ7CwqBkHX97C6S
https://cloud.ml.jku.at/s/dZ7CwqBkHX97C6S
https://github.com/seyonechithrananda/bert-loves-chemistry
https://arxiv.org/abs/2102.09844
https://github.com/vgsatorras/egnn
https://arxiv.org/abs/2012.04035
https://arxiv.org/abs/2012.04035
https://arxiv.org/abs/2011.12820
https://arxiv.org/abs/2011.12820
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00430-x
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00430-x
https://github.com/XinhaoLi74/MolPMoFiT
https://arxiv.org/abs/2106.04399
https://arxiv.org/abs/2106.04399
https://github.com/bengioe/gflownet
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00566-4
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00566-4
https://github.com/UnixJunkie/FASMIFRA
https://arxiv.org/abs/2110.06389
https://arxiv.org/abs/2110.06389
https://github.com/wenhao-gao/SynNet
https://www.future-science.com/doi/10.2144/fsoa-2021-0062
https://www.future-science.com/doi/10.2144/fsoa-2021-0062
https://pubs.acs.org/doi/10.1021/acs.jcim.9b01120
https://github.com/oxpig/DeLinker
https://arxiv.org/abs/2002.03230
https://arxiv.org/abs/2002.03230
https://github.com/wengong-jin/hgraph2graph
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00431-w
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00431-w
https://github.com/DrrDom/crem
https://www.nature.com/articles/s41596-021-00597-z
https://arxiv.org/abs/2110.15486
https://arxiv.org/abs/2110.15486
https://github.com/dockstring/dockstring
https://figshare.com/s/95f2fed733dec170b998
https://pubs.rsc.org/en/content/articlelanding/2021/sc/d0sc06805e
https://pubs.rsc.org/en/content/articlelanding/2021/sc/d0sc06805e
https://github.com/coleygroup/molpal
https://pubs.acs.org/doi/10.1021/acscentsci.0c00229
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https://github.com/jamesgleave/Deep-Docking-NonAutomated
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https://chemrxiv.org/engage/chemrxiv/article-details/61a6579f568d33caaa4bff69
https://chemrxiv.org/engage/chemrxiv/article-details/61a6579f568d33caaa4bff69
https://github.com/jku-vds-lab/cime
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00519-x
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DATA SETS

•	 ADME@NCATS

•	 AMED Cardiotoxicity Database

•	 BindingDB

•	 ChEMBL

•	 DrugBank Online

•	 DrugMatrix

•	 Enamine Real database

•	 hERG Central

•	 MoleculeNet

•	 MONA: DB of Mass spec + other readouts
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